Домой Мексика В каком веществе теплопередача происходит путем теплопроводности. Способы теплопередачи. Конвекционные виды теплообмена

В каком веществе теплопередача происходит путем теплопроводности. Способы теплопередачи. Конвекционные виды теплообмена

Фаттахов Мухамад

Исследовательская работа по физике: Теплопередача. Виды теплопередачи.

Скачать:

Предварительный просмотр:

Конкурс исследовательских работ в рамках Малой академии наук школьников

Республики Башкортостан.

Секция: Физика

Исследовательская работа

“Теплопередача. Виды теплопередачи”

Обучающийся 8 класса

МОБУ СОШ с. Сухоречка

Руководитель: Панова Зульфия

Хайдаровна, учитель

МОБУ СОШ с. Сухоречка

2017-2018 учебный год

С. Сухоречка

1. Введение.Актуальность данной темы……………………………….................3

2. Тема, цели, задачи, этапы проекта………………………………………………4

3. Основная часть……………………………………………………………………6

3.1. Теплопередача и ее виды……………………………………………………6

3.2. Значение теплопередачи в природе и в жизни людей…...........................9

3.3. Применение видов теплопередачи в жизни................................………..10

3.4. Опыты………………………………………………………………………..11

4. Заключение………………………………………………………………………..17

5. Литератураи информационные ресурсы ………………………………………..18

1.Введение.

Но как же жизнь бываетнепроста

с той дамой,что зовётся «Теплота»!

С раннего детства и на протяжении всей своей жизни человек пытается найти ответы на тысячи вопросов, связанных с происходящими вокруг него явлениями. Тысячи "Почему" звучит из уст ребёнка, пока он растёт. На многие вопросы мы находим ответы сами по мере взросления. Другие остаются загадкой. Так и я, открывая мир вокруг, пытался найти объяснение тому, что видел, с чем сталкивался. Особенно меня интересовали вопросы, связанные с теплом и его передачей. Одни ответынаходил изучая природу, другие доказывал с помощью опытов, а всю информациюнашел в одном предмете под названием “Физика”. Одним из самых задаваемых вопросов в физике стал вопрос “Как же передаётся тепло? Как его сохранить”. Данный вопрос, по моему мнению, актуален и в наше время, так как человек разрабатывает новые материалы, которые лучше сохраняют тепло, как в строительстве, так и в одежде. Ответ на вопрос, конечно же, есть в обычном учебнике по физике, но чтобы удостовериться, я еще лично проведу исследовательскую работу.

Актуальность исследовательской работы состоит в изучении современных достижений науки и техники в области теплопередачи на экспериментальном уровне и это вызывает живой интерес в исследовании данной темы.

В зимнее время года возникает необходимость утеплять как самих себя, так и своё жильё, желательно используя современные достижения науки. Изучение этих достижений и определило выбор темы исследования .

2.Тема, цели, задачи, этапы проекта.

Цели моего исследования являются:

  • изучить различные виды теплопередачи и их применение в нашей жизни;
  • изучение литературы по теме;
  • рассмотрение роли видов теплопередачи в живой и неживой природе и использование их в жизни человека;
  • практическое исследование особенностей теплопроводности, конвекции, излучения;
  • подготовка и проведение демонстраций теплопроводности, конвекции, излучения;

При исследовании я ставил перед собой следующие задачи :

  • Изучить явление теплопередачи.
  • Рассмотреть виды теплопередачи и их применение.
  • Провести опыты по различным видам теплопередачи.
  • Проанализировать и обобщить полученные данные.

Объект исследования – процесс теплопередачи.

Предмет исследования - теплопередача и ее виды;

Гипотезы исследования- 1) предположим, что явление теплопередачи не имеет применения в жизни; 2) возможно, что виды теплопередачи имеют широкое применение в нашей жизни.

Этапы работы над проектом:

  1. Выбортемы.
  2. Изучениелитературы.
  3. Выполнение исследовательской части работы, подготовка материала.
  4. Оформлениеработы.
  5. Подготовка и выступление на итоговой конференции.

Методыисследования:

Изучение теории, сравнение, проведение опытов, обобщение и анализ полученных результатов .

Практическаязначимость: использование теоретических знаний на практике.

Моя работа предусматривала несколько этапов:

Первыйэтап - подготовительный – заключался в обсуждении темы, определении цели и задачи проекта;

Второйэтап - основной – заключался в проведении опытов и обработкерезультатов.

Апробация исследования.

Материалы исследования могут быть использованы на уроках физики, во внеклассной работе и в повседневной жизни.

3. Основная часть.

3.1Теплопередача. Виды теплопередачи.

Еще в 1744-1745 гг. М. В. Ломоносов в своих «Размышлениях о причине теплоты и холода» высказал утверждение о том, что тепловые явления обусловлены движением частиц тела - его молекул.

Но к XVIII столетию теплоту представляли себе в виде невесомой и невидимой жидкости, пропитывающей поры тела, как вода пропитывает губку. Действительно, мы замечаем, что тепло от огня в очаге передается через стенки котла в воду, из воды - в погруженную в нее ложку. Любой человек сумеет найти множество примеров, подтверждающих это представление.Эта жидкость не только невидима, но и невесома. Эту жидкость назвали теплородом.

Опытное доказательство правильности идей Ломоносова было дано лишь в конце XVIII в. Это сделал английский физик Румфорд. Следя за изготовлением пушек в Мюнхенском арсенале, он обратил внимание на то, что при сверлении и ствол пушки, и сверло сильно разогреваются.

И так,т еплопередача , по слову можно понять, что это передача тепла. Это физический процесс изменения внутренней энергии без совершения работы над телом или самим телом называется теплопередачей. Существует 3 вида теплопередачи.

Первый вид – это теплопроводность. Теплопроводность – это явление передачи внутренней энергии от одной частитела к другой или от одного тела к другому при их непосредственном контакте.

Второй вид – это конвекция. Конвекция – это вид теплообмена, при котором внутренняя энергия передается струями и потоками.

Третий вид – это излучение. Излучение – это процесс испускания и распространения энергии в виде волн и частиц.

3.2. Значение теплопередачи в природе и в жизни людей.

Вот так мы узнали, какие бывают виды теплопередачи, а вот сейчас вопрос “Какое же их значение в природе, мире?”. Ответ кроется ещё в прошлом, когда люди еще незнали о теплопередачи, о её видах и свойствах, они пытались получить и сохранить тепло.В нашей жизни все способы теплопередачи работают одновременно. Редко бывает, когда эти способы действуют отдельно. Это можно доказать, нагревая воду в кастрюле. Сначала от горелки нагревается кастрюля (теплопроводность), затем начинает нагреваться вода (теплопроводность и конвекция). Тепло от кастрюли и воды передается по всем направлениям (излучение).Различные виды теплопередачи находят широкое применение в повседневной жизни, природе и технике. Например, батареи отопления устанавливаются ближе к полу и чаще всего у окна, так как воздух, находящийся около батареи, нагревается, расширяется, становится более легким и поднимается вверх. На его место опускаются более тяжелые холодные слои воздуха. Таким образом, постепенно воздух в комнате прогревается.

В природе благодаря явлению конвекции образуются теплые и холодные течения в океанах. Грязный снег в солнечную погоду тает быстрее, чем чистый, потому что тела с темной поверхностью лучше поглощают солнечное излучение и быстрее нагреваются.

К примеру, излучение. Мы знаем, что энергия передаётся в виде волн.

К примеру, солнце, образно говоря, греет землю, с помощью электромагнитных волн передаёт тепло земле или без конвекции в доме не было бы так тепло. Таких примеров можно приводить много.

3.3 Применение видов теплопередачи в жизни

Познакомившись с различными видами теплопередачи, можно многое объяснить:

  • почему реки зимой не промерзают до дна;
  • почему кирпичные стены дома, который строится рядом с нашим лицеем, обшивают листами пенопласта;
  • почему у ТЭЦ такая высокая труба;
  • почему между стеклами в рамах есть воздушный зазор;
  • почему летом люди стараются носить светлую одежду, а зимой шубы и пуховики;
  • почему окна с южной стороны летом закрывают серебристой фольгой;
  • почему у термоса внутренняя поверхность зеркальная, а между внутренним и внешним сосудами пустота;
  • почему в районах вечной мерзлоты здания строят на сваях;
  • почему трубы от котельной до потребителя закрывают стекловатой;
  • почему люди зимой носят темные одежды (черного, синего, коричного цвета), а летом светлые (бежевые, белые цвета);
  • почему в районах с жарким климатом люди носят ватные халаты и меховые шапки;
  • почему звери зимой надевают более густую шубу, а птицы сидят нахохлившись;
  • почему животные, не имеющие волосяного покрова, имеют толстый слой подкожного жира.

Можно привести еще огромное количество интересных примеров применения теплопередачи в нашей жизни.

3.4 Опыты

Опыт №1 “Сравнение теплопроводности воды и воздуха”

Цель работы :проверить, где обычная банка с жидкостью быстро охладиться от 25 градусов комнатной температуры до самой низкой, в морозильнике или в воде с поваренной солью и льдом, то есть я сравню теплопроводность воздуха и воды.

Приборы и материалы : электрический термометр, обычный холодильник (морозильник). Не глубокая, но широкая посуда с водой, обычная соль, поваренная и лёд.

Ход работы:

У меня имеется 2 банки с жидкостью с комнатной температурой 25 градусов. Я наливаю в не глубокую чашку воду, накладываю туда небольшие куски льда и сыплю поваренную соль. Затем, одну банку с жидкостью я помещаю в морозильник, а другую в чашку с поваренной солью, водой и льдом. Жду 10 минут, и проверяю, где же лучше охладилась банка с жидкостью.

Прошло 10 минут, я одновременно достаю 2 банки с жидкостью и начинаю проверку. Проверка показала, что банка с жидкостью, которую я достал, с морозилки стала 20 градусов с 25 градусов комнатной температуры. Вторая банка, которая была, в соленой воде вместе со льдом стала 8 градусов с 25 градусов комнатной температуры.

Следовательно, вторая банка с жидкостью охладилась лучше, чем первая, потому что в морозильнике плохая теплопроводность, а вот в воде с солью лучше, потому что вода полностью покрывает банку с жидкостью, а в морозилке просто холодный воздух.

Вывод:

Выше приведённым опытом мною выявлено, что теплопроводность воды лучше, чем у воздуха. Вот табличные значения: теплопроводность воздуха 1Дж/кг*с и воды 4200 Дж/кг*с 0 .

Опыт №2 Вертушка.

Цель работы:узнать, будет ли вращаться вертушка из фольги, при определённом накале лампы.

Приборы и материалы: лампа, вертушка из тонкой фольги, остриё от компаса.

Ход работы:

Я достаю обычную лампу и подключаю её к розетки. Далее на вверх лампы ставлю остриё от компаса и помещаю туда тонкую вертушку из фольги. Включаю лампу, со временем вертушка начинает медленно вращаться, и чем больше времени лампа включена, тем вертушка крутиться быстрей.

Вывод:

Конвекция в воздухе всё- таки, есть, и я смог это доказать. Вертушка начала крутится под действием теплых струй воздуха, исходящих от лампы.

Опыт № 3 Теплопередача излучением

Цель работы: доказать, что с помощью волн электроплитки, направленных к теплоприёмнику, который соединён с левом коленом манометра, можно передать тепло так, что температура манометра будет изменяться, то есть увидеть излучение.

Инструменты и материалы: электроплитка, теплоприёмник, манометр.

Ход работы:

Я электроплиткуставлю вертикально в центре рядом, где стоит теплоприёмник, а справа ставлю манометр. Электроплитка имеет открытую спираль, а вот внутренняя полость теплоприёмника соединена с левом коленом манометра, правое колено манометра открыто. Разворачиваю теплоприёмник главной стороной к электроплитке, потом я включаю плитку и слежу за изменениями манометра.При включении электроплитки волны уходят к теплоприёмнику. А энергия, которая приходит к теплоприёмнику, отдаётся в манометр. И начинают изменяться показания температуры, она повышается.

Вывод:

Следовательно, энергия, получаемая от электроплитки теплоприемником, передавалась ни конвекцией, ни теплопроводностью, а именно излучением.

Рассуждение:

Из проведённых выше опытов было доказано, что у трёх видов теплопередачи существуют множество различных способов передавать свою энергию, то есть тепло.

Теперь представьте, чтобы стало с Землёй, если бы этих трёх способов передачи энергии не было?

Ответов на мой же один вопрос будет четыре. Сейчас я объясню, почему же всего лишь на один вопрос, так много ответов. Суть лежит в способах передачи, их всего 3 и к каждому будет ответ с объяснением. Что было бы, если бы не было излучения, и так и далее. А четвертый ответ, это объедённые ответы прошлых трёх, то есть главный ответ.

Вопрос№1 и ответ

Вопрос: Что было бы, если не было бы, теплопроводности в мире?

Ответ: теплопроводность нужна для проведения через предмет тепла, тем самым нагревая предмет. Множество людей попросту не смогли бы приготовить себе ужин и т.д.

Вопрос № 2 и ответ

Вопрос: что было бы, если не было бы, конвекции в мире?

Ответ: тепло от батарей не циркулировало бы по дому, не было бы движения воздушных масс, не было бы дождей вдали от рек морей и океанов, вся земля превратилась бы в пустыню.

Вопрос № 3и ответ

Вопрос: что было бы, если не было бы, излучения в мире?

Ответ: теплые тела перестали бы излучать тепло, это и костер и лампа; на небе светило бы солнце, но не грело бы; Земля превратилась бы в ледяную глыбу, так как не имело бы источников энергии; внутренние слои земли себе спокойно булькали бы при тысячах градусах, но тепло от них не проникало бы на поверхность земли.

Ответ № 4

(Главный)

1) 2) 3) - все эти случаи приводят к гибели Земли и всего, что есть на ней.

Вот, во что превратится Земля, если это произойдёт.

Она начнёт постепенно замерзать, то есть медленно умирать.

Вывод

Вот я узнал, к чему могут привести все случаи, а приведут, они как я говорил, к гибели Земли. Главное, что данные виды теплопередачи будут существовать все время, как они существовали, так и будут!

Заключение

Из всех моих приведённых объяснений, рассуждений, доказательств, опытов и выводов мною и моим учителем физики Пановой З.Х.было подтверждено, что

теплопередачей называют процесс передачи тепла от более нагретого тела к менее нагретому. Существует три вида теплопередачи: теплопроводность, конвекция, излучение. В жизни все они чаще всего действуют одновременно. Поэтому вокруг себя мы можем наблюдать множество примеров применения разных видов теплопередачи.

В ходе изучения этой темы стало понятно, что знания различных способов передачи тепла имеют большое значение в жизни человека. Применяя эти знания, можно многое объяснить. А ученые-технологи создают новые строительные материалы, которые хорошо защищают жилище человека от холода и воздействия атмосферных явлений.

Данная тема актуальна и сейчас, тем, что от теплопередачи и её видов и от их существования зависит жизнь людей, животных и всего мира. Ведь на первом месте у человека стоит, не как вы думаете, любовь, деньги, а жизнь. Жизнь это что-то уникальное, не просто какая-то вещь или игрушка, жизнь – это активное существование. Если бы человек не развивал науку, не было бы активного развития мира, того скачка вперёд, который полностью изменил жизнь не только человека, но и других живых существ. Человек благодаря науке физике изменил планету и выбрался в космос. Ведь именно физика, это то, что реально изменила, как и внутреннее, так и внешнее состояние жизни. Именно открытия в физике, это и есть тот скачок, прорыв в жизни людей, такие как полёт в космос, открытие закона падения камня, законов движения и сохранения энергии, открытие электрического тока.

Теплопередача, кажется, просто три способа передавать тепло, но если их не было бы или на это как-то повлиял человеческий фактор, то планета Земля закончила бы свое существование в космосе!

Литература и информационные ресурсы

  1. Учебник физики 8 класс: Перышкин А.В.
  2. Блудов М.И. Беседы по физике. – М.: Издательство «Просвещение», 1984.
  3. Горев Л.А. Занимательные опыты по физике. – М.: Издательство «Просвещение», 1977.
  4. Дитрих А.К., Юрмин Г.А., Кошурникова Р.В. Почемучка. – М.: Педагогика-Пресс, 1993.
  5. http://уроки.мирфизики.рф

От более горячего тела к более холодному либо непосредственно (при контакте), либо через разделяющую (тела или среды) перегородку из какого-либо материала. Когда физические тела одной системы находятся при разной температуре , то происходит передача тепловой энергии , или теплопередача от одного тела к другому до наступления термодинамического равновесия . Самопроизвольная передача тепла всегда происходит от более горячего тела к более холодному, что является следствием второго закона термодинамики

Виды теплообмена

Всего существует три простых (элементарных) вида передачи тепла:

Существуют также различные виды сложного переноса тепла, которые являются сочетанием элементарных видов. Основные из них:

  • теплоотдача (конвективный теплообмен между потоками жидкости или газа и поверхностью твёрдого тела);
  • теплопередача (теплообмен от горячей жидкости к холодной через разделяющую их стенку);
  • конвективно-лучистый перенос тепла (совместный перенос тепла излучением и конвекцией);
  • термомагнитная конвекция

См. также

  • Абсорбционная колонна , пример тепломассообменного аппарата

Литература

  1. Григорьев Б. А., Цветков Ф. Ф. Тепломассообмен: Учеб. пособие - 2-е изд. - М: МЭИ, 2005.
  2. Брюханов О. Н., Шевченко С. Н. Тепломассообмен: Учеб. пособие. - М: АСВ, 2005.
  3. Исаченко В. П. и др. Теплопередача: Учебник для вузов. 3-е изд., перераб. и доп. - М.: Энергия, 1975.
  4. Галин Н. М., Кириллов П. Л. Тепломассообмен. - М.: Энергоатомиздат, 1987.
  5. Карташов Э. М. Аналитические методы в теплопроводности твердых тел. - М.: Высш. шк., 1989.

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Теплопередача" в других словарях:

    Теплопередача … Орфографический словарь-справочник

    Теплообмен между двумя теплоносителями через разделяющую их тв. стенку или через поверхность раздела между ними. Т. включает в себя теплоотдачу от более горячей жидкости или газа к стенке, теплопроводность в стенке, теплоотдачу от стенки к более… … Физическая энциклопедия

    Теплопередача - – перенос теплоты через ограждающую конструкцию от среды с более высокой температурой к среде с более низкой температурой. [ГОСТ 26602.1 99] Теплопередача – теплообмен между теплоносителем и бетоном через разделяющую их твердую стенку … Энциклопедия терминов, определений и пояснений строительных материалов

    Теплообмен между двумя теплоносителями или иными средами через разделяющую их твердую стенку или через поверхность раздела между ними. Интенсивность теплопередачи характеризуется коэффициентом теплопередачи, равным плотности теплового потока на… … Большой Энциклопедический словарь

    ТЕПЛОПЕРЕДАЧА, теплопередачи, мн. нет, жен. (физ.). Передача теплоты от одного тела к другому. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    Совокупность явлений, при к рых имеет место перенос тепла из одной части пространства в другую. Перенос может происходить различными способами: теплопроводностью, конвекцией и лучеиспусканием. Теплопроводность явление непосредственной передачи… … Технический железнодорожный словарь

    Сущ., кол во синонимов: 2 передача (85) теплообмен (4) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    теплопередача - Теплообмен между двумя теплоносителями через разделяющую их твёрдую стенку или через поверхность раздела между ними [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] Тематики термодинамикахолодильная техника EN heat … Справочник технического переводчика

    теплопередача - 3.20 теплопередача: Теплообмен между двумя средами через разделяющую их жалюзи роллету.

Теплообменом называется перенос тепла от одних тел к другим или одних частей тела к другим, вызываемый разностью температур. Процесс теплообмена – это сложный процесс, он связан с конвективной и молекулярной диффузией и определяется законами аэродинамики, газодинамики, термодинамики, передачи энергии в форме теплоты, передачи лучистой энергии и превращением ее в теплоту и наоборот.

Теплообмен характеризуется выравниванием температуры и осуществляется тремя способами: теплопроводностью, конвекцией, излучением.

Теплопроводность – это передача тепла молекулярной диффузией, т.е. перенос тепловой энергии осуществляется от частиц обладающих большей энергией к частицам с меньшей энергией. Теплопроводность наблюдается только в твердых телах и неподвижных слоях жидкости или газа.

Конвекция – передача тепла потоками жидкости или газа из одной области пространства в другую. Конвекция бывает свободной и вынужденной.

Свободная конвенция возникает из-за разности плотностей нагретой и холодной среды. При вынужденной конвенции движущиеся потоки создаются принудительно – компрессором, вентилятором и т.д.

Конвекция сопровождается переносом тепла теплопроводностью в пограничных слоях. Совместный процесс конвекции и теплопроводности называется конвективным теплообменом.

Излучение – это передача тепловой энергии путем электромагнитных колебаний. Процесс передачи тепла излучением можно условно разделить на 3 этапа:

1. Преобразование внутренней энергии системы в энергию электромагнитных волн;

2. Распространение этих волн в среде, разделяющей источник и приемник.

3.Реакция приемника на излучение.

В реальных условиях названные способы переноса тепла протекают одновременно: такое физическое явление называется сложным теплообменом . Его закономерности могут быть установлены на основе закономерностей простых видов теплообмена.

Тепловой поток – это количество тепловой энергии, которая передается через произвольную поверхность в единицу времени:

Удельный тепловой поток – это количество тепловой энергии, которая передается через 1м 2 поверхности за единицу времени:

где F – площадь поверхности, м 2 ; Ф – тепловой поток, Вт

. 2.2 Теплопроводность

Если выделить в теле слой толщиной , то через площадку dF , нормальную к направлению теплового потока, за время пройдет количество теплоты, равное

где – коэффициент теплопроводности, Вт/м·К ;

– разность температур в слое, К;

– толщина слоя, м;

– время, с;

dF - площадь, м 2 .

Дифференциальная зависимость (2.3) называется основным уравнением теплопроводности или уравнением Фурье


Рис. 2.1 Схема переноса тепла через плоскую однородную

Величина показывает изменение температуры в слое и называется градиентом температур. Распространение тепла в теле происходит лишь в сторону понижения температуры, поэтому величина отрицательна, на что показывает знак минус в уравнении Фурье.

Теория теплообмена изучает закономерности распространения и пе-реноса тепловой энергии. Обмен энергией в форме теплоты происходит при наличии разности температур между отдельными телами или частями одного и того же тела и продолжается до тех пор, пока температура обоих тел не сравняется. Поскольку температура является мерой внутренней энергии, следовательно, при теплообмене происходит увеличение внут-ренней энергии одного (холодного) тела за счет ее уменьшения у другого тела (горячего).

Процесс теплообмена является естественным и необратимым, т. е. он всегда протекает в одном направлении: от горячего тела к холодному.

Существует три способа переноса теплоты: теплопроводность, кон-векция и излучение.

Теплопроводность -процесс распространения теплоты в твердыхтелах и жидкостях, находящихся в состоянии покоя. В диэлектриках (в ма-териалах, непроводящих электричество) тепловая энергия передается ко-лебаниями кристаллической решетки, а в металлах - главным образом за счет движения свободных электронов в решетке. Теплопроводность в чис-том виде наблюдается только в твердых телах.

Конвекция -перенос теплоты при перемещении отдельных масс иобъемов жидких и газообразных тел.

Обычно происходит одновременно конвекция и теплопроводность. Такой процесс называется конвективным теплообменом . Перенос теплоты от одного тела к другому при конвекции и теплопроводности осуществля-ется только при их соприкосновении.

Излучение -теплообмен между телами на расстоянии в форме лу-чистой энергии. Носителями лучистой энергии являются электромагнит-ные волны (фотоны). При излучении тепловая энергия нагретого тела пе-реходит в лучистую, распространяется в окружающем пространстве, пада-ет на другое тело и вновь переходит в тепловую энергию.

Решение задач теплообмена всегда имеет конкретный характер, одно-значно определяемый условиями протекания процессов.

Эти условия включают:


– геометрические особенности поверхностей тел и окружающего их пространства (формы, размеры);

– особенности протекания процесса во времени;

– граничные особенности процесса теплообмена, т. е. значение и рас-пределение физических величин на границах раздела тел, участвующих в теплообмене;

– физические и химические свойства и параметры среды, в которой осуществляется перенос теплоты.

Не всегда, однако, эти условия однозначности позволяют получить аналитическое решение задач теории теплообмена. Поэтому для изучения процессов теплообмена исключительное значение имеют физические экс-перименты и обобщение их результатов.

Теплопроводность

Особенности явлений теплопроводности связаны с распределением температуры в телах. В общем случае температура тел может изменяться во всех точках пространства с течением времени. Совокупность мгновен-ных значений температуры во всех точках изучаемого пространства носит название температурного поля .

Температурное поле является однородным , если во всех точках про-странства температура одинакова, и неоднородным , если она различна. Поверхности, на которых расположены точки с одинаковой температурой, называются изотермическими , а сечение этих поверхностей - изотерма-ми (рис. 3.1).Вдоль изотермических поверхностей теплота не распростра-няется. Наиболее быстрое изменение температуры происходит в направле-нии по нормали к изотермическим поверхностям.

Рис. 3.1. Температурное поле


Предел отношения разности температур двух изотерм к расстоянию между ними по нормали, когда n стремится к нулю, называется градиен-

том температур и обозначаетсяgrad t .

Градиент - мера наибольшей интенсивности изменения температу-ры; он является векторной величиной. Положительным считается направ-ление, в котором температура возрастает. Количественно интенсивность теплообмена характеризуется плотностью теплового потока , то есть ко-личеством теплоты, проходящей через единицу поверхности в единицу времени. Согласно закону Фурье - основному закону теплопроводно-сти - плотность теплового потока, Вт/м 2 , определяется по формуле

где Q - количество теплоты, Дж; F - площадь, м 2 ; τ - время, ч.

Закон Фурье утверждает, что плотность теплового потока пропорцио-нальна градиенту температур

где λ - коэффициент теплопроводности, характеризующий интенсивность распространения теплоты, т. е. количество теплоты, проходящее вследст-вие теплопроводности в единицу времени через единицу поверхности теп-лообмена при падении температуры на 1 градус на единицу длины норма-ли к изотермической поверхности, Вт/м К.

Знак «минус» в правой части указывает на противоположность на-правлений теплового потока и изменения температуры в теле. Коэффици-ент теплопроводности зависит от химического состава тел, их структуры, плотности, влажности, давления, температуры и составляет величину по-рядка от 0,01 до 400 Вт/(м·К).

Тела, имеющие λ <0,2 Вт/(м·К), называются теплоизоляторами . Хо-рошими проводниками теплоты являются тела, имеющие λ >20 Вт/(м·К).

Наименьшие значения коэффициента теплопроводности имеют газы (от 0,01 до 1 Вт/(м·К)), наибольшие - металлы (серебро - 410, медь -

360, алюминий - 200-300, сталь - 45-55 Вт/(м·К)).

Уравнение теплопроводности Фурье представляет собой математиче-ское описание процесса изменения температуры во времени в любом месте тела, вызываемого результирующим переносом теплоты.


Уравнения теплопроводности обычно аналитически решают для кон-кретных условий протекания процесса с привлечением известных условий однозначности.

На практике приходится встречаться с различными задачами тепло-проводности, которые условно делятся на три группы:

1) стационарная теплопроводность, когда распределение температур в теле сохраняется неизменным во времени и соответственно плотность теп-лового потока постоянна. Процессы теплообмена в нагревательных уст-ройствах и аппаратах, ограждающих конструкциях строительных соору-жений при длительных неизменных температурах наружной и внутренней среды могут рассматриваться не зависящими от времени;

2) нестационарная теплопроводность, когда происходит изменение температурного поля во времени. Нестационарная теплопроводность на-блюдается, например, при нагревании и охлаждении тел, когда до начала теплового воздействия во всей массе тела была одинаковая температура;

3) температурные волны в телах, подвергаемых периодическому теп-ловому воздействию. Например, годовые колебания температуры в по-верхностном слое земли, суточные колебания температуры наружного воз-духа и под их воздействием температуры поверхностей ограждающих кон-струкций.

Ниже дано частное решение уравнения Фурье для двух задач стацио-нарной теплопроводности.

1. Одномерное распределение теплоты в плоской стенке (рис. 3.2). Тепловой поток в плоской стенке равен

ностях F 1 и F 2 , °С.

Для многослойной стенки с толщинами слоев δ i и коэффициентами теплопроводности λ i уравнение теплового потока обобщается следующим образом:


где α - коэффициент конвективной теплоотдачи, характеризующий ин-тенсивность теплообмена конвекцией, Вт/(м 2 ·К); t ж - температура жидко-сти вдали от стенки, °С; t ст - температура поверхности стенки, °С; F -тепловоспринимающая поверхность тела,м 2 .

Одной из главных задач теории конвективного теплообмена является определение значения коэффициента теплоотдачи для конкретных условий протекания процесса.

На величину α оказывает влияние множество факторов, основными из которых являются характер конвекции, режим движения, физические свойства жидкости, геометрические особенности поверхности тел, участ-вующих в теплообмене.

Конвекция называется свободной , если она возникает за счет разности давлений (плотности), обусловленной неоднородностью температурного поля жидкости. Явление свободной конвекции можно наблюдать над по-верхностью нагретых тел, когда находящиеся вблизи этих поверхностей частицы воздуха, нагреваясь, поднимаются вверх, а на их место устремля-ются холодные массы воздуха (рис. 3.4).

Свободная конвекция возникает естественно во всяком объеме, где имеются тела с различной температурой, и протекает тем интенсивнее, чем выше разность температур.

Рис. 3.4. Свободная конвекция: а – вертикальная нагре-тая стенка; б – горизонтальная плита; в – горизонталь-ная плита, нагреваемая снизу

Вынужденной конвекцией называется теплообмен при движении жид-кости под действием внешних сил, например, создаваемых насосом, вен-тилятором, компрессором. Интенсивность теплообмена при этом тем вы-ше, чем больше скорость течения жидкости, омывающей поверхности тел.

Причина повышения интенсивности теплообмена при увеличении скорости течения заключается в изменении режима движения жидкости, переходе ламинарного движения в турбулентное (см. рис. 3.1).

В ламинарном потоке тепловая энергия переносится тепло-проводностью и поперечной диффузией масс. Интенсивность такого переноса энергии зависит от свойств среды, и тем меньше, чем больше толщи-на потока. В турбулентном потоке энергия переносится от жидкости к стенке перемешивающимися массами и лишь в пограничном слое - теп-лопроводностью. Поэтому интенсивность теплоотдачи в турбулентном по-токе выше, чем в ламинарном.

Ламинарное и турбулентное течения жидкости могут наблюдаться как при вынужденном, так и при свободном движении. Однако в последнем случае эти режимы создаются исключительно условиями теплового воз-действия, тогда как при вынужденном движении используются искусст-венные способы воздействия на течение жидкости.

Интенсивность конвективной теплоотдачи зависит также от физиче-ских свойств жидкости, характеризуемых значением коэффициентов теп-лопроводности и температуропроводности, теплоемкости, коэффициентов объемного расширения и кинематической вязкости.

Геометрические условия конвективного теплообмена определяются формой тела, его размерами, характером поверхности, обтекаемой жидко-стью.

По геометрическим условиям различают теплообмен при внутреннем течении жидкости в трубах, каналах (внутренняя задача) и внешнем омы-вании поверхностей потоком (внешняя задача). При внешнем обтекании поток может быть продольным по отношению к наибольшему размеру по-верхности или поперечным (например, при обтекании пучка труб, располо-женных перпендикулярно направлению потока).

Во всех случаях геометрические условия оказывают существенное влияние на распределение скоростей и температур в потоке, на режим движения, изменяя интенсивность теплообмена. Для учета этих факторов необходимо задаваться характерными размерами и формой тела.

Значения коэффициентов теплоотдачи в различных задачах конвек-тивного теплообмена определяют путем решения критериальных уравне-ний, при помощи которых обобщаются данные экспериментальных иссле-дований, так, например, для свободной конвекции используется уравнение вида

где Nu l -критерий Нуссельта; α -коэффициент конвективной теп-

Грасгофа; g - ускорение силы тяжести, м/с 2 ; β - коэффициент объемного

Рейнольдса; С , n , m - опытные коэффициенты, - скорость жидкости, м/с.


Любое материальное тело обладает такой характеристикой как теплота, которая может увеличиваться и уменьшаться. Теплота не является материальной субстанцией: как часть внутренней энергии вещества она возникает вследствие движения и взаимодействия молекул. Поскольку теплота различных веществ может отличаться, происходит процесс передачи тепла от более нагретой субстанции к веществу с меньшим количеством теплоты. Этот процесс носит название теплопередача. Основные и механизмы их действия мы рассмотрим в этой статье.

Определение теплопередачи

Теплообмен, или процесс переноса температуры, может происходить как внутри материи, так и от одного вещества к другому. При этом интенсивность теплообмена во многом зависит от физических свойств материи, температуры веществ (если в теплообмене участвуют несколько субстанций) и законов физики. Теплопередача - это процесс, который всегда протекает в одностороннем порядке. Главный принцип теплообмена заключается в том, что наиболее нагретое тело всегда отдаёт тепло объекту с меньшей температурой. Например, при глажке одежды горячий утюг отдаёт тепло брюкам, а не наоборот. Теплопередача - явление, зависимое от временного показателя, характеризующее необратимое распространение тепла в пространстве.

Механизмы теплопередачи

Механизмы теплового взаимодействия веществ могут приобретать разные формы. Известны три вида теплообмена в природе:

  1. Теплопроводность - механизм межмолекулярной передачи тепла из одного участка тела в другой или в иной объект. Свойство основывается на неоднородности температуры в рассматриваемых субстанциях.
  2. Конвекция - теплообмен между текучими средами (жидкая, воздушная).
  3. Лучевое воздействие - передача тепла от нагретых и нагреваемых за счёт своей энергии тел (источников) в виде электромагнитных волн с постоянным спектром.

Рассмотрим перечисленные виды теплообмена более подробно.

Теплопроводность

Чаще всего теплопроводность наблюдается в твёрдых телах. Если под воздействием каких-либо факторов у одного и того же вещества появляются участки с разными температурами, то тепловая энергия из более нагретого участка перейдёт к холодному. Подобное явление в некоторых случаях можно наблюдать даже визуально. Например, если взять металлический стержень, скажем, иголку, и нагреть его на огне, то через какое-то время увидим, как тепловая энергия передаётся по иголке, образуя на определённом участке свечение. При этом в месте, где температура выше, свечение ярче и, наоборот, где t ниже, оно темнее. Теплопроводность может наблюдаться также между двумя телами (кружкой горячего чая и рукой)

Интенсивность передачи теплового потока зависит от многих факторов, соотношение которых выявил французский математик Фурье. К этим факторам относится в первую очередь градиент температуры (соотношение разности температур на концах стержня к расстоянию от одного конца к другому), площадь сечения тела, а также коэффициент теплопроводности (у всех веществ он разный, но самый высокий наблюдается у металлов). Самый значительный коэффициент теплопроводности наблюдается у меди и алюминия. Неудивительно что именно эти два металла чаще используются в изготовлении электропроводов. Следуя закону Фурье, величину теплового потока можно увеличить или уменьшить, изменив один из этих параметров.

Конвекционные виды теплообмена

Конвекция, свойственная в основном для газов и жидкостей, имеет два компонента: межмолекулярную теплопроводность и движение (распространение) среды. Механизм действия конвекции происходит следующим образом: при повышении температуры текучей субстанции её молекулы начинают более активное движение и при отсутствии пространственных ограничений объём вещества увеличивается. Следствием данного процесса будет уменьшение плотности субстанции и её движение вверх. Яркий пример конвекции - это движение нагретого радиатором воздуха от батареи к потолку.

Различают свободные и вынужденные конвективные виды теплообмена. Теплопередача и движение массы при свободном типе происходит за счёт неоднородности субстанции, то есть горячая жидкость поднимается над холодной естественным образом без оказания влияния внешних сил (например, обогрев комнаты посредством центрального отопления). При вынужденной конвекции движение массы происходит под действием внешних сил, например, помешивание чая ложкой.

Лучистый теплообмен

Лучистая или радиационная теплопередача может происходить без контакта с другим объектом или субстанцией, поэтому возможна даже в Радиационный теплообмен присущ всем телам в большей или меньшей степени и проявляется в виде электромагнитных волн с непрерывным спектром. Яркий тому пример - солнечные лучи. Механизм действия выглядит следующим образом: тело непрерывно излучает определённое количество теплоты в окружающее его пространство. Когда эта энергия попадает на другой объект или субстанцию, часть её поглощается, вторая часть проходит насквозь, а третья отражается в окружающую среду. Любой объект может как излучать тепло, так и поглощать, при этом тёмные вещества способны поглощать больше тепла, чем светлые.

Комбинированные механизмы теплопередачи

В природе виды процессов теплообмена редко встречаются по отдельности. Гораздо чаще их можно наблюдать в совокупности. В термодинамике эти сочетания даже имеют названия, скажем, теплопроводность + конвекция - это конвективный теплообмен, а теплопроводность + тепловое излучение называют радиационно-кондуктивной теплопередачей. Кроме этого, выделяют такие комбинированные виды теплообмена, как:

  • Теплоотдача - движение тепловой энергии между газом или жидкостью и твёрдым веществом.
  • Теплопередача - передача t от одной материи к другой через механическое препятствие.
  • Конвективно-лучистый теплообмен образуется при совмещении конвекции и теплового излучения.

Виды теплообмена в природе (примеры)

Теплообмен в природе играет огромную роль и не ограничивается нагреванием земного шара солнечными лучами. Обширные конвекционные потоки, такие как передвижение воздушных масс, во многом определяют погоду на всей нашей планете.

Теплопроводность ядра Земли приводит к появлению гейзеров и извержению вулканических пород. Это лишь малая часть в глобальных масштабах. В совокупности они образуют виды конвективного теплообмена и радиационно-кондуктивные типы теплопередачи необходимые для поддержания жизни на нашей планете.

Использование теплообмена в антропологической деятельности

Тепло - это важная составляющая почти всех производственных процессов. Сложно сказать, какой вид теплообмена человеком используется больше всего в народном хозяйстве. Наверное, все три одновременно. Благодаря процессам теплопередачи происходит выплавка металлов, производство огромного количества товаров, начиная с предметов повседневного использования и заканчивая космическими судами.

Крайне важное значение для цивилизации имеют тепловые агрегаты, способные преобразовывать тепловую энергию в полезную силу. Среди них можно назвать бензиновые, дизельные, компрессорные, турбинные установки. Для своей работы они используют различные виды теплообмена.

Новое на сайте

>

Самое популярное